

World Aquaculture 2009

PARTIAL HARVEST WITH BFT, A PROMISING SYSTEM FOR PACIFIC WHITE SHRIMP

Nyan Taw*, Hendri Fuat, Naira Tarigan & Kaesar Sidabutar Global Group, Indonesia

Veracruz, Mexico 29 September 2009

Acknowledgements

The presentation is based on studies carried out at ATP shrimp farm (Global Group) in Medan, Indonesia.

The authors would like to sincerely thank the staff and members of Global Group for their support to make the study possible. Sincere thanks to Mr. Octo Rachnalim and Mr Asiong (Medan) without their earnest support this study could not have materialized.

I would also like to thank Dr. Shahridan Faiez (CEO) and Mr. Christopher Lim (COO) of Blue Archipelago for their support for me to participate at the meeting.

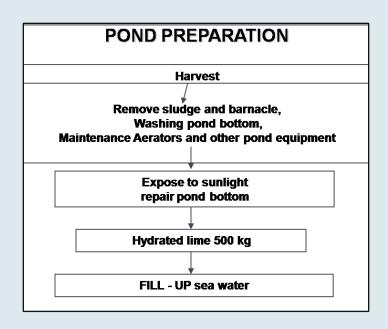
Introduction

Shrimp farming has become competitive and as such the technology utilized needs to be efficient in all aspects – productivity, quality, sustainability, biosecurity and to be in line with market demand.

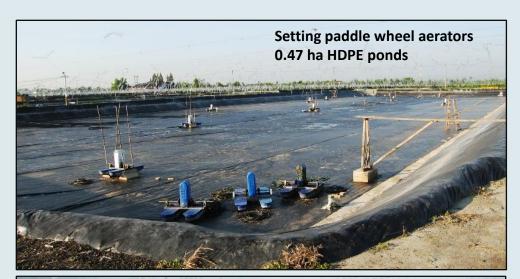
BFT (bio-floc) appears to be the solution for efficiency in terms of energy and feed utilization. The basic system of bio-floc technology was given by Avnimelech (2000, 2005a&b). The system was successfully applied in commercial culture of shrimps by McIntosh (2000a,b & c, 2001), McNeil (2000), Nyan Taw (2005, 2006), Nyan Taw & Saenphon Ch. (2005); Saenphon Ch. et.al. (2005). Most recently a study on BFT in combination with partial harvest was carried out by Nyan Taw, et. at (2008).

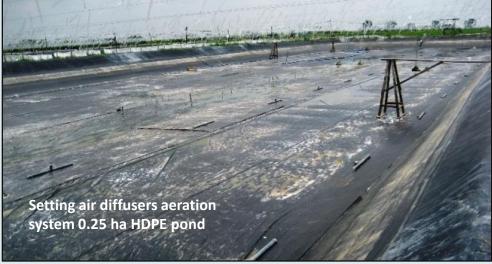
Indonesia

Shrimp Farm Location

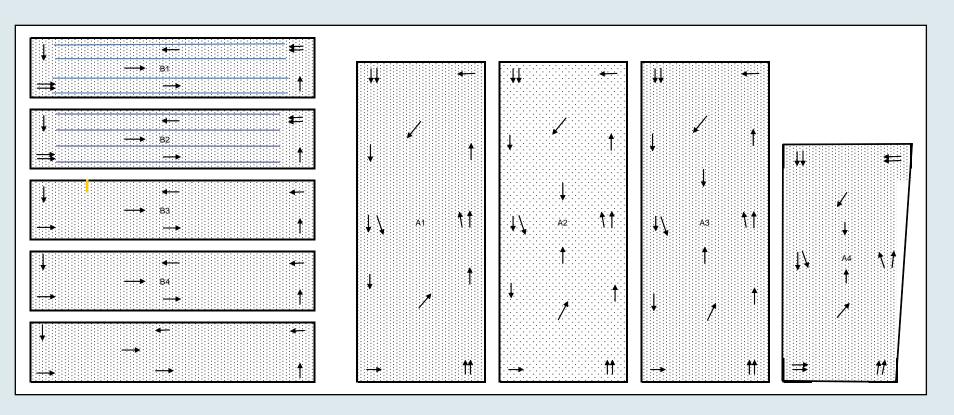


Farm Modules' Layout with Reservoirs and Culture Ponds KTN Filla SDP CP C3 CP C2 CP C1 Hatchery D.3 1.8 1.8 CP A2 CP A3 CP A4 12 Furd 28Feb08


Farm Biosecurity


- SPF Post larvae
- 2. Module system
- 3. HDPE lined ponds
- 4. Control inlet & discharge gates (no leakages)
- 5. Clean pond & equipments
- 6. Screen & treat water
- 7. Correct aeration system
- 8. Crab Fence
- 9. Bird scare lines
- 10. Control workers & their movement
- 11. Control visitors

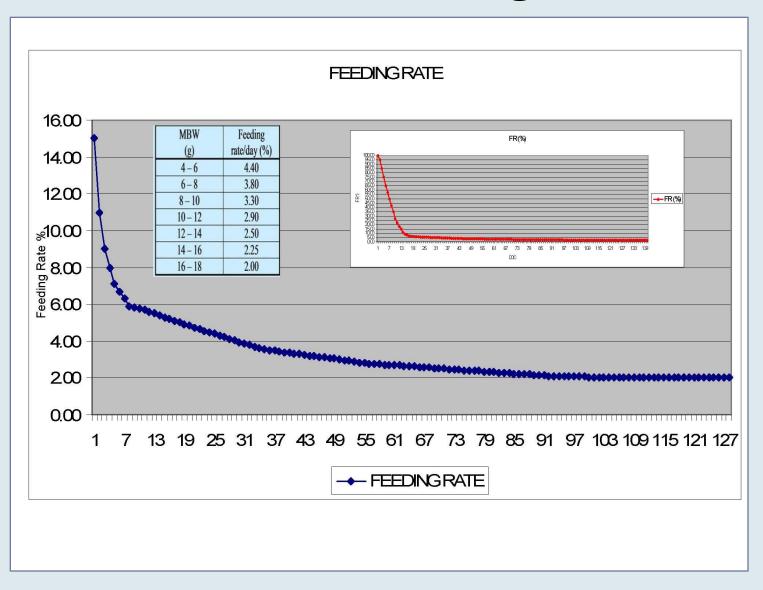
Pond Preparation



HDPE lined ponds
Placing paddle wheels in pre-determined position in pond
Placing air diffusers in pre-determined position in pond

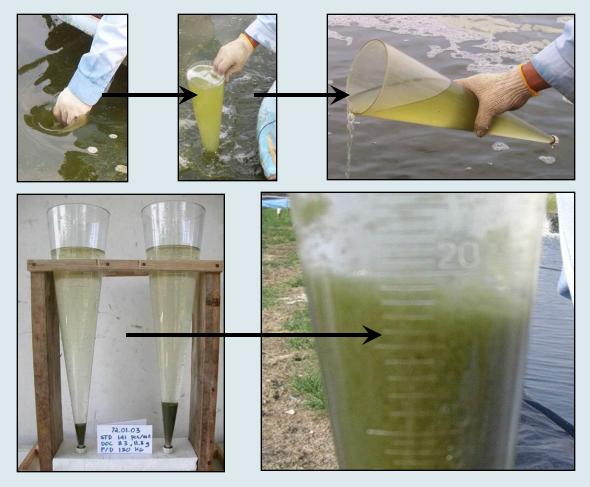
Positions - Paddle wheel aerators and air diffusers

Paddle wheels and air diffusers – set to have a circular motion of pond water to concentrate bio-floc at center of ponds. One or two paddle wheels were set directed to the center to re-suspend bio-floc to be actively suspended in the pond.


Pond Water Preparation

Provided IS - Seferousberger	
DAY	ACTIVITY
1 st	Urea 8kg/pond, TSP 1 kg/pond
	Grain pellet 30 kg/pond & Dolomite 50 kg/pond
2 nd	Tea Seed Cake 15 ppm
4 th	Grain pellet 30 kg/pond & Dolomite 50 kg/pond
6 th	Grain pellet 30 kg/pond & Dolomite 50 kg/pond
8 th	Grain pellet 50 kg/pond Molasses 8 kg/pond & Kaolin 50 kg/pond
10^{nd}	Grain pellet 50 kg/pond Molasses 8 kg/pond
12 nd	Kaolin 50 kg/pond

HDPE lined 0.5 ha production ponds


Standard Feeding Rate

Bio-floc sample

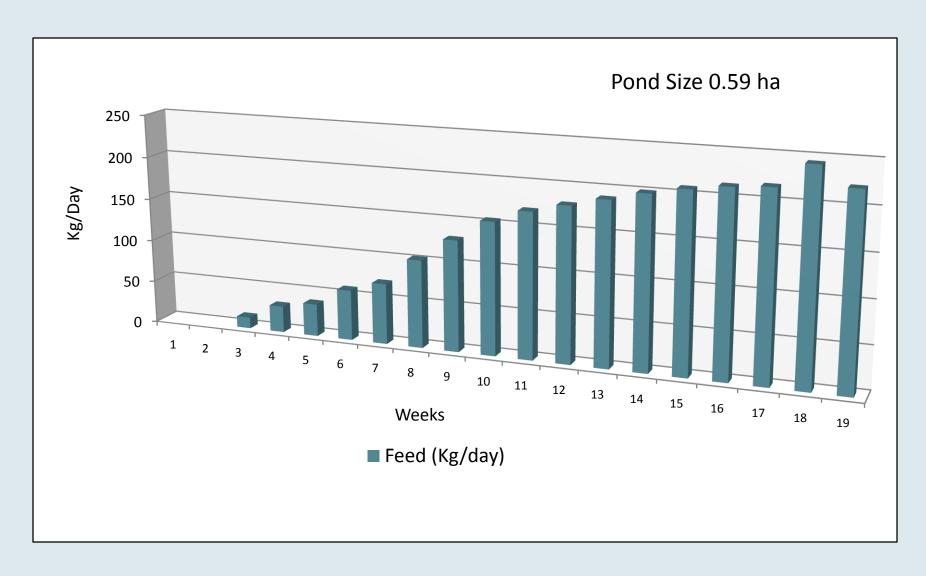
Measuring procedure

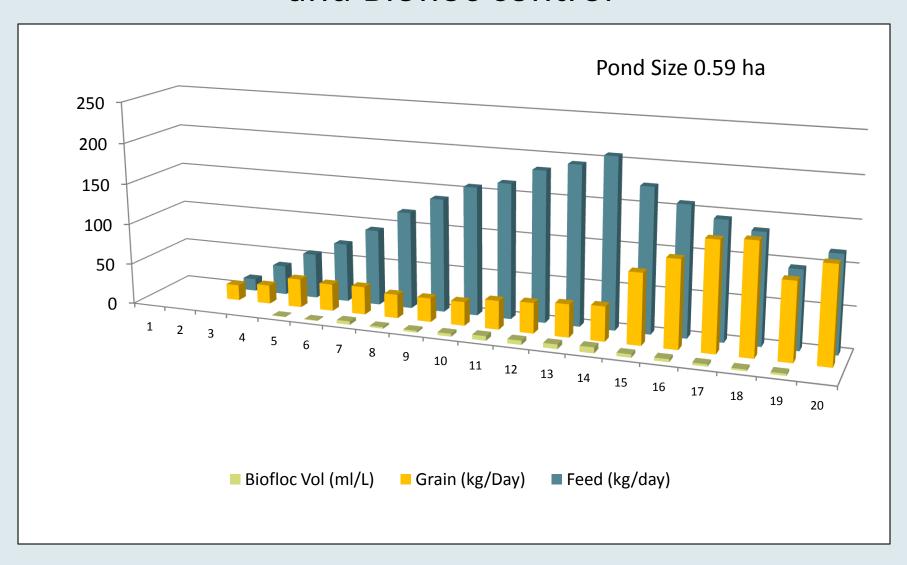
1 liter / 2 places/ 15 cm deep/ between 10-12 am

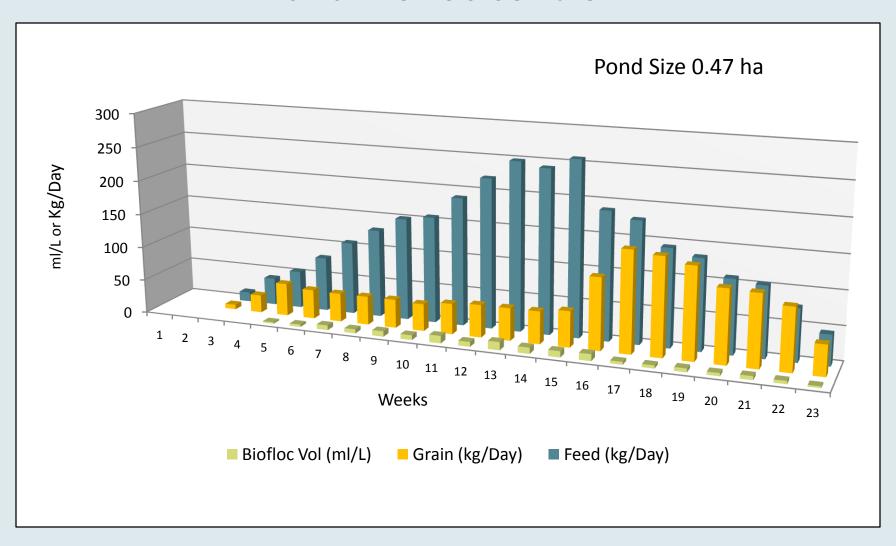
Let it settled for 15-20 minutes

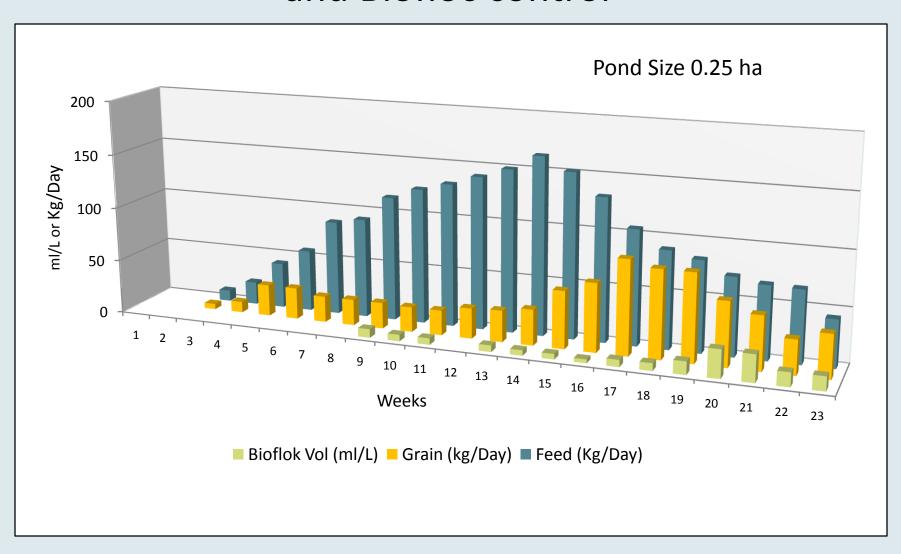
Read density of flocs in cone (ml/l)

Culture Operation with Biosecurity

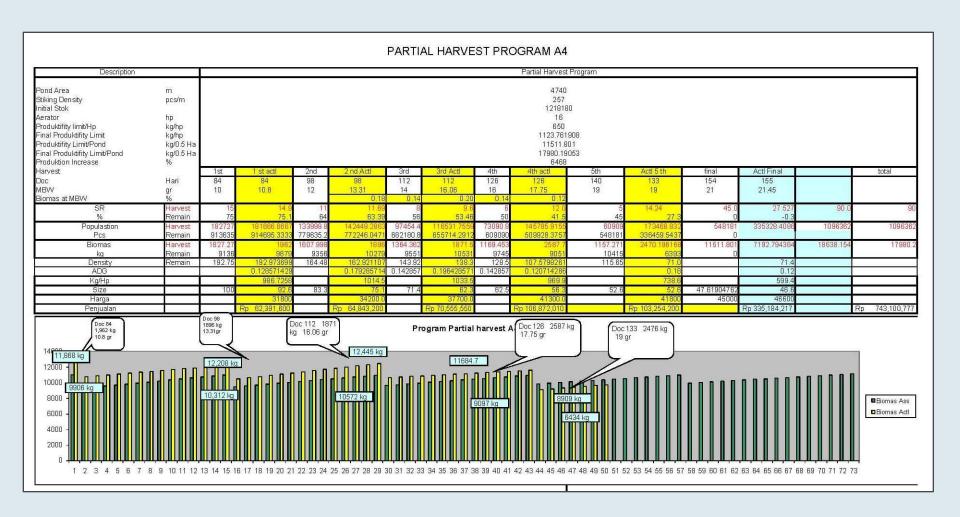

- 1. Paddle wheels & air diffuser positions
- 2. Crab fence & bird scare lines

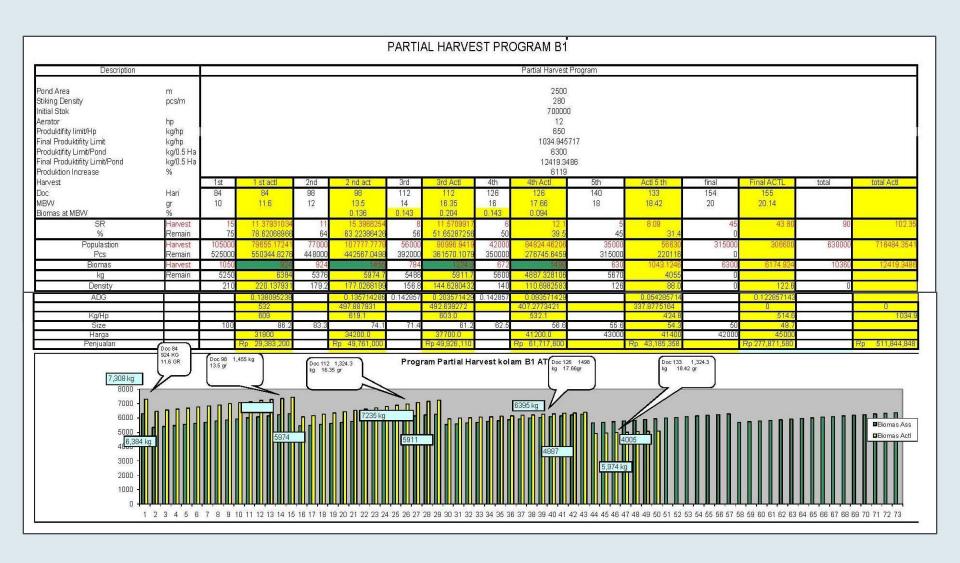

Control Biofloc

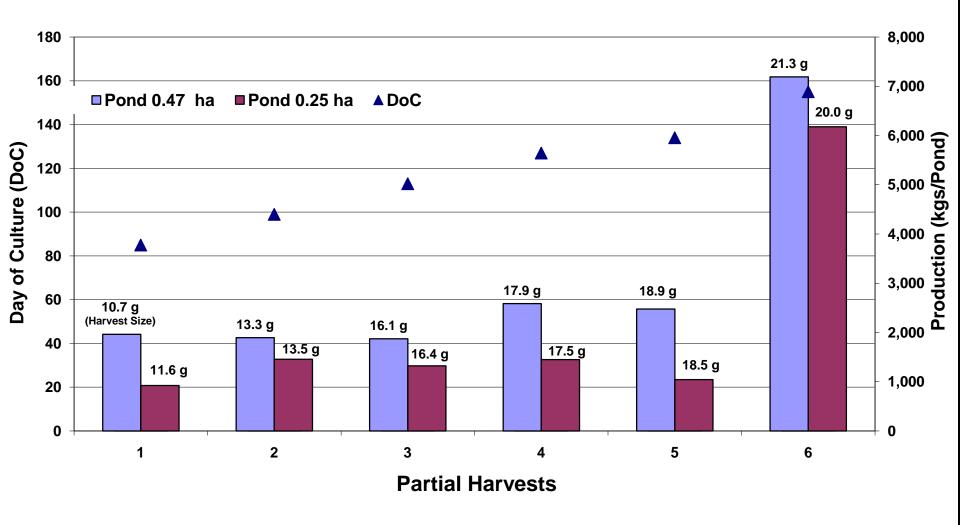

Application of Feed - Phytoplankton


Application of Feed & Grain BFT and Biofloc control

Application of Feed & Grain BFT and Biofloc control

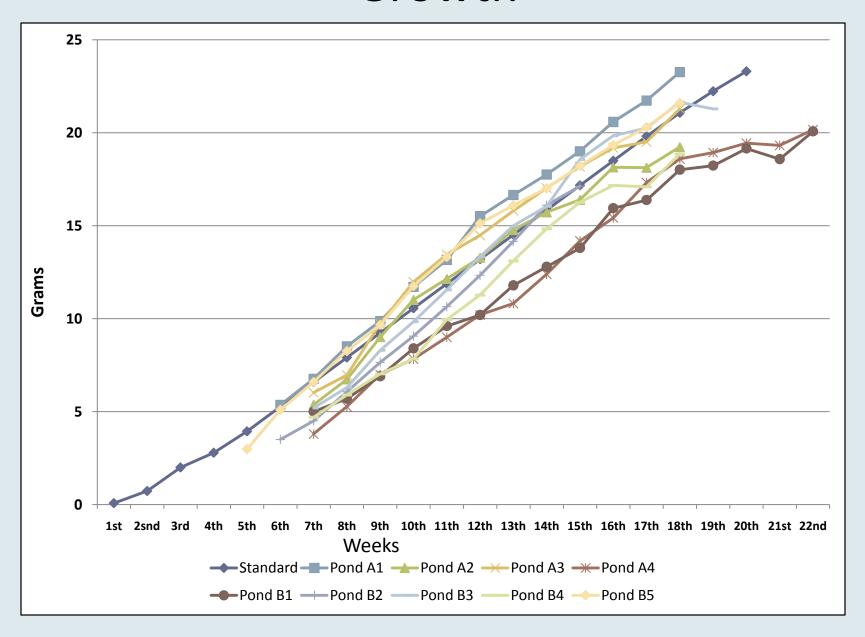

Application of Feed & Grain BFT and Biofloc control


Partial Harvesting with Cast Nets


Partial Harvests - 0.47 ha Pond

Partial Harvests - 0.25 ha Pond

Partial Harvest Performance with Bio Floc Technology



Environment (Pond water quality)

•	Dissolved Oxygen (DO)	3.7 - 5.3
---	-----------------------	-----------

• Salinity (ppt)
$$20.0 - 35.0$$

Growth

Harvest Performance Summary ATP Sei Buluh

Periode: april 2007 - Aguastus 2008

Description	Flush Out	PD	PN	Total Average	
	DOC < 43	DOC 43 - 104	DOC> 104		
Number of Pond			9	9	
Pond Size (M²)			3748.2	3748.2	
PL Source (Hatchery/Nursery)			KPP / ATP	KPP / ATP	
Pond Type			FULL HDPE	FULL HDPE	
Number of PWA			13.30	13.30	
Stocking Density(Pls/m²)			182.80	182.80	
DOC			123.40	123.40	
SR (%)			84.35	84.35	
MBW Actual Harvest (gr)			20.43	20.43	
FCR Pellet			1.24	1.24	
ADG (gr)			0.16	0.16	
Productivity (Kg/Pond)			10430.56	10430.56	
Productivity (Kg/Ha)			27878.78	27878.78	
Productivity/Power Input (Kg/hp)			763.22	763.22	
Tot. Production			93,875	93,875	

Harvest Performance

Performa Panen berdasarkan Densitas Tebar Pond Base Blok ATP Farm Sei Buluh Siklus I

Votorongon	Alamat Tambak											
Keterangan	Kolam A1	Kolam A2	Kolam A3	Kolam A4	Kolam B1	Kolam B2	Kolam B3 Kolam B4		Kolam B5	Total Average		
Ukuran Tambak (M²)	5896	5896	5986	4704	2500	2500	2500	2500	2500	3886.888889		
Tipe Tambak	FULL HDPE	FULL HDPE	FULL HDPE	FULL HDPE	FULL HDPE	FULL HDPE	FULL HDPE	FULL HDPE	FULL HDPE	FULL HDPE		
Benur	NP PT. KPP	NP PT. KPP	NP PT. KPP	NP PT. KPP	NP PT. KPP	KPP	NP PT. KPP	NP PT. KPP	ATP			
Jumlah kincir	16	18	18	16	12	12	10	12	7	13.44		
Stoking Density	100	145	146	257	280	200	145	145	130	172.00		
DOC	127	131	130	155	155	105	127	130	132	132.44		
SR (%)	75.72	84.07	80.95	86.54	102.15	64.84	86.35	100.8	77.7	84.35		
MBW actual harvest (gr)	23.26	19.23	21.15	21.45	20.14	17.12	21.37	18.52	21.6	20.43		
FCR Pellet	1.6	1.2	1.14	1.12	1.11	1.38	1.10	1.1	1.38	1.24		
ADG	0.18	0.15	0.16	0.14	0.13	0.16	0.17	0.14	0.16	0.16		
Produktivitas (kg/pond)	11,461	13,508	14,386	17,983	12,371	5550	6545	6615	5456	10430.56		
Produktivitas (kg/Ha)	19,439	22,910	24,219	38,229	49,448	22,200	26,180	26460	21,824	27878.78		
Produktivitas/Power Input (kg/hp)	720	739	807	1124	1031	463	655	551	779	763.22		

Harvest (Partial) Performance

Partial Harvest Performance with Bio Floc Technology (February - July 2008)

Pond/size	System	Energ	y Input	Density	Partial		Harve	est		Pro	duction	F	CR	SR	Energy Effici	ency -kg/HP		
Poliu/Size	System	(Pond)	(Ha)	(M2)	Failiai	DoC	Biomas (Kg)	Size No/kg	MBW (gr)	Kg/Pd	Kg/Ha	GP	Feed	(%)	Std Capacity	Efficiency		
1	Phyto	16 (PW)	27 (D\\\)	100	1	118	434	47	21.28				1.60	75.72	560*	720		
5896 m2		10 (FVV) 27 (27 (PW)		Final	127	11,027	43	23.26	11,461	19,439	0	1.00	13.12	300	720		
2				145	1	108	2,092	59	16.95					84.07				
	Bio Floc	18 (PW)	31 (PW)	143	2	121	1,016	55	18.18	13,508	22,910	0.59	1.20	04.07	680*	739		
5896 m2					Final	131	10,400	52	19.23									
3				146	1	109	2,108	56	17.86		24,219		1.14	80.95	680*			
U	Bio Floc	18 (PW)	30 (PW)	140	2	122	999	50	20.00	14,386		0.56				807		
5940 m2					Final	130	11,279	47	21.28									
					1	85	1,962	93	10.75				1.12	86.54	680*	1,124		
	Bio Floc	oc 16 (PW)			2	99	1,896	75	13.33		3 38,229	0.58						
4			34 (PW)	257	3	113	1,871	62	16.13	17,963								
4704 m2) 34 (I VV)		4	127	2,587	56	17.86	17,300								
					5	134	2,475	53	18.87									
					Final	155	7,192	47	21.28									
	Bio Floc	9 (PW) 3 (BL)			1	84	924	86	11.63									
			36 (PW) 12 (BL)		2 99 1,455 74 13.51				A									
5				280	3	113	1,324	61	16.39	12,371	49,484	0.48	1.11	102.35	680*	1,031		
2,500 m2					4 127 1,448 57	17.54	,	45,464	0.40		102.55		1,001					
					5	134	1,043	54	18.52									
					Final	155	6,177	50	20.00									
		7 (PW)	BL) 12 (BL)	28 (PW/)	145	1	110	1,166	51	19.61					86.35			
6	Bio Floc	3 (BL)			2	124	367	49	20.41	6,545	26,180	0.50	1.10		680*	655		
2500 m2					Final	127	5,012	47	21.28									
		, ,	9 (PW)	36 (PW)	36 (PW)	145	1	110	892	61	16.39							
7			12 (BL)		2	124	323	57	17.54	6,615	26,460	0.50	1.10	100.8	680*	551		
2500 m2			`		Final	130	5,400	54	18.52									

Nyan Taw

References

Avnimelech, Yoram 2000. Nitrogen control and protein recycle. Activated suspension pond. *The Advocate* April 23-24

Avnimelech, Yoram 2005a. Tilapia harvest microbial flocs in active suspension research pond. *Global Aquaculture Advocate* V 8 (5), 57-58

Avnimelech, Yoram, 2005b Feeding of Tilapia on microbial flocs: Quantitive evluation using material balances. Paper presented at *World Aquaculture 2005*, May 9-13, Nusa Dua, Bali, Indonesia. Book of Abstracts, 57

McIntosh, Robin P., 2000a Changing paradigms in shrimp farming. III Pond design and operation consideration *The Advocate* February 42-45

McIntosh, Robin P., 2000b Changing paradigms in shrimp farming. IV Low protein feeds and feeding strategies. *The Advocate* April 44-50

McIntosh, Robin P., 2000c Changing paradigms in shrimp farming. V Establishment of heterotrophic bacterial communities *The Advocate* December 52-54

McIntosh, Robin P., 2001, Changing paradigms in shrimp farming. V Establishment of heterotrophic bacterial communities *The Advocate* February 52-58

McNeil, Roberick, 2000, Zero exchange, aerobic, heterotrophic systems: Key considerations. *The Advocate* June 72-76

Nyan Taw, 2005a. Shrimp Farming in Indonesia: Evolving industry responds to varied issues. **Global Aquaculture Advocate** V = 8 (4), 65 - 67

Nyan Taw, 2005b. Indonesia shrimp production. Paper presented at *World Aquaculture 2005*, May 9-13, Nusa Dua, Bali, Indonesia. Book of Abstracts, 644.

Nyan Taw & Saenphon Chandaeng, 2005. The role of R&D and commercial trials on efficiency and productivity of large integrated shrimp farm. Paper presented at *World Aquaculture 2005*, May 9-13, Nusa Dua, Bali, Indonesia. Book of Abstracts, 643.

Nyan Taw, 2006, Shrimp production in ASP system, CP Indonesia: Development of the technology from R&D to commercial production. Paper presented at *Aquaculture America 2006* Las Vegas, USA February 2006

Nyan Taw, Hendri Fuat, Naira Tarigan & Kaesar Sidabutar. 2008, Partial harvest/biofoc system: Promising for Pacific white shrimp. *Global Aquaculture Advocate* September/October 84-86

Saenphon Chandaeng, Nyan Taw, M. Handoyo Edi & Agung Gunawan, 2005. Culture trails on production potential of L. vannamei in heterotropic (bacteria floc) system. Paper presented at *World Aquaculture* 2005, May 9-13, Nusa Dua, Bali, Indonesia. Book of Abstracts, 112.